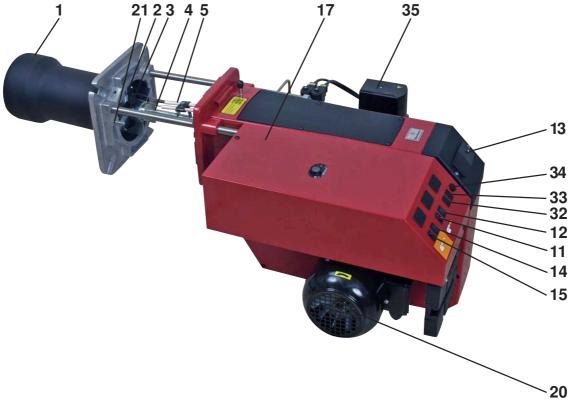
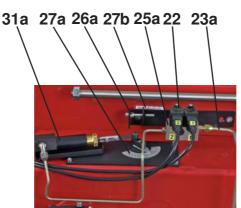


Installation & Maintenance Manual

MOL 795/1175 (B55-2/3 - B65-2/3)

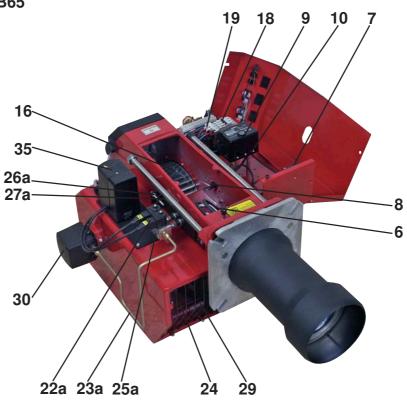

Oil Burner

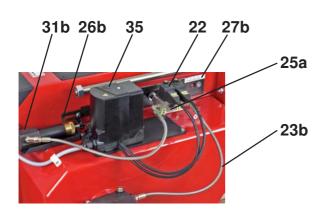

Contents

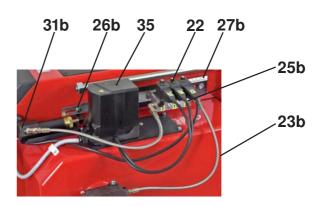
01.	GENERAL	
	Description B55/B65/	6-7
	Declaration of conformity	8
	Manual	
	Safety directions	9
02.	TECHNICAL DATA	10
	Type designation B55-2H/B55-2/B55-2R/B55-3/B65-2H/B65-2/B65-2R/B65-3	10
	Dimensions	
	Output range and nozzles recommended	
	Recommended nozzle and pressure	
	Working field	
	Nozzle table	12
03	INSTALLATION	13
00.	Acceptance inspection	_
	Preparations for installation	
	Distribution of oil	
	Electrical connections	
	Choice of nozzle	
	Setting of the brake plate and air flow	
	Burner installation	
	Hole pattern	14
	Installing the burner	14
	Oil lines	
	Electrical connections	14
04	BASIC SETTINGS	15
U T .	Typical basic settings for B65-2H/B65-2/B65-2R/B65-3R	
	Set values for nozzle assembly B55	
	Set values for nozzle assembly B65	
	Set values for air damper B55	
	Set values for air damper B65	
	Nozzle assembly regulation – fixed brake plate	
	Nozzle assembly regulation – adjustable brake plate	
	Hydraulic air adjustment	
	Damper motor 2-Stage	
	Damper motor 3-Stage	19
05	MAINTENANCE	20
05.	Servicing the burner device	_
	Adjusting the ignition electrodes and brake plate	
	Servicing the air damper	
	Replacing the damper motor	
	Replacing the oil pump B55/B65	
06.	INSTRUCTIONS PUMP TYPE RSA 95 & 125	
	Technical data	
	Components	
	Mounting/dismounting by-pass plug	
	Purging	
	Replacing the filter Function Danfoss RSA 95 - 125	
	Suction line tables	

09.	ELECTRIC EQUIPMENT	25
	Wiring diagram LOA44/LMO24.255 (B55-2H/B65-2H)	25
	Wiring diagram LOA44/LMO24.255 (B55-2/B65-2/B55-2R/B65-2R)	
	List of components LOA44/LMO24.255 (B55-2H/B65-2H/B55-2R/B65-2R)	
	Function LOA44/LMO24.255	
	Technical data LOA44/LMO24.255	
	Wiring diagram LAL 1 (B55-2/B55-2R/B65-2/B65-2R)	
	List of components LAL 1 (B55-2/B55-2R/B65-2/B65-2R)	
	Function LAL 1	
	Wiring diagram LAL 1 (B55-3/B65-3)	30
	Wiring diagram LAL 1 (B55-3/B65-3 with regulator RT 16)	
	List of components LAL 1 (B55-3/B65-3 och B55-3/B65-3)	
	Function LAL 1	
	Control programme under fault conditions and lock-out indication LAL 1	
	Technical data LAL 1	
	Manual RT 16	
	Function RT 16	
10.	FAULT LOCATION	
	Burner fails to start	
	Burner fails to start after normal operation	36
	Delayed ignition, burners starts violently	36
11.	SPARE PART LIST	37-39

Description B55/B65


Components


- Flame cone
- 2. Brake plate
- Nozzle 3.
- Nozzle assembly 4.
- 5. Ignition electrodes Switch I-II
- 11.
- Indicating lamp Stage 2 Cover, inspection glass 12.
- 13.
- 14. Indicating lamp Stage 1
- 15. Switch 0-I
- Electric panel 17.
- 20. Motor
- 21. Locking device, flange


- Solenoid valves 22.
- 23a. Connecting pipe
- 25a. Solenoid valve bloc Stage 2
- 26a. Nozzle assembly adjustment fixed
- 27a. Scale, air regulation
- 27b. Scale, nozzle assembly
- 31a. Adjustment device, air damper
- Switch II-III 32.
- 33. Indicating lamp Stage 3
- 34. Fuse
- 35. Damper motor

01. GENERAL

Description B55/B65

Components

- Ignition cables
- Ignition transformer 7.
- 8. Photocell
- 9. Control box
- 10. Front plate, relay base
- 16. Fan wheel
- 18. Contactor
- Thermal overload protection 19.
- 22. Solenoid valve 23b. Hydraulic hose
- 24. Air intake

- 25a. Solenoid valve bloc Stage 2
- 25b. Solenoid valve bloc Stage 3
- 26a. Nozzle assembly adjustment fixed
- 26b. Nozzle assembly adjustment hydraulic 27b. Scale, Nozzle assembly 29. Air damper

- 31b. Adjustment device, Nozzle assembly
- 35. Damper motor

Declaration of conformity

Manufacturer: Enertech AB, Bentone Division

Street address: Näsvägen

SE-341 34 Ljungby

Address: P.O. Box 309

SE-341 26 Ljungby

Sweden

Product: Oil burner

Type: B 1, B 2, B 9, B 10, B 11, B 20, B 30, B 40, B 45, B 50,

B 55, B 60, B 65, B 70, B 80, ST 97, ST 108, ST 120,

ST133, ST 146

Certfikat TÜV Süddeutschland

Certifikat Nr Burner

021198p15001 ST97, ST108, ST120, ST133, ST146

02119815002 B9, B10, B11 02119815003 B20, B30, B40, B45 02119815004 B50, B60, B70, B80

Enertech AB declares under sole responsibility that the above mentioned product is in conformity with the following standards or other normative documents.

Document: EN 267

and follows the provisions of applicable parts in the following EU Directives:

89/336/EEC Electromagnetic compatibility

73/23/EEC Low-voltage directive 89/392/EEC Machinery directive 92/42/EEC Efficiency directive

In that the burner conforms to the above mentioned standards it is awarded the CE mark.

Enertech AB, Bentone Division is quality certified according to SS-EN ISO 9001:2000

Ljungby, Sweden June 2004

Sven-Olov Lövgren

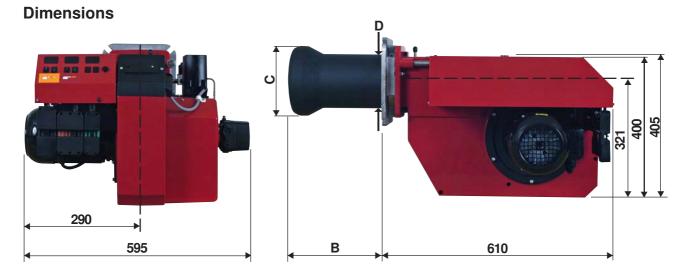
01. GENERAL

Manual

- The contents of this manual are to be observed by all who work for any reason on the unit and its appertaining system parts.
- This manual is intended especially for authorised personnel.
- This manual is to be regarded as part of the burner and shall always be available near the place of installation.

Safety directions

The electrical installation shall be made according to valid regulations for heavy current and in a professional way, so that the risk of leaking oil, fire or personal injury is avoided.


Condensation in chimney

A modern burner works with less air surplus and often with a smaller nozzle than older models. This improves the efficiency but increases also the risk of condensation in the chimney. The risk is greater if the cross sectional area of the chimney flue is too big. Temperature of the flue gases should be higher than $60\,^{\circ}\text{C}$ measured $0.5\,\text{m}$ from the top of the chimney.

Setting the burner

A flue-gas analysis and measuring of the temperature should be done to facilitate a correct setting. There is otherwise a risk of soot, poor efficiency or condensation in the chimney.

Type designation B55-2H/B55-2/B55-2R/B55-3R/B65-2H/B65-2/B65-2R/B65-3R

	Length of	Flange	Burner tube	Burner tube	Length of	Flange	Burner tube	Burner tube
	burner tube	Measure B	Measure C	Measure D	burner tube	Measure B	Measure C	Measure D
	B55	B55	B55	B55	B65	B65	B65	B65
0. 1 14	200	070	100	455	200	050	010	455
Standard 1	303	273	160	155	288	258	210	155
Standard 2	403	373	160	155	388	358	210	155
Standard 3	503	473	160	155	488	458	210	155

Output range and nozzles recommended

	Oil capacity	Output		Recommen	ded nozzle	Recommended
	kg/h	kW	Mcal/h	Angle	Danfoss	Pump pressure
B55-2H, B55-2, B55-2R B55-3R B65-2H, B65-2, B65-2R B65-3R	14-67 14-64 24-99 24-99	166-795 166-759 285-1174 285-1174	143-685 143-654 246-1012 246-1012	45°-60° 45°-60° 45°-60° 45°-60°	S, B S, B S, B S, B	14 bar 14 bar 14 bar 14 bar

The net calorific value of 11,86 kWh/kg for light oil has been used.

Recommended nozzle and pressure

Because of the different boiler types, combustion chamber geometries and combustion chamber loads that exist, it is not possible to specify a given spray angle or spray pattern. It should be noted that the spray angle and spray pattern will vary depending on the pump pressure.

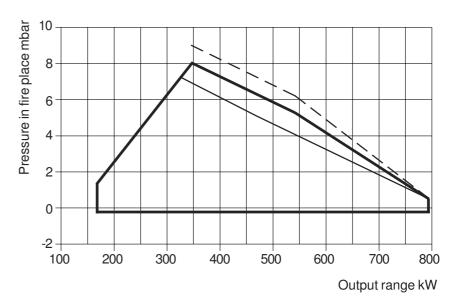
Nozzle 45 °S Danfoss 45 °B Danfoss 60 °S Danfoss 60 °B Danfoss

Pump pressure 14 bar (12 - 16 bar)

On burners equipped with hydraulic air control or optimization the oil pressure

should not be less than 14 bar.

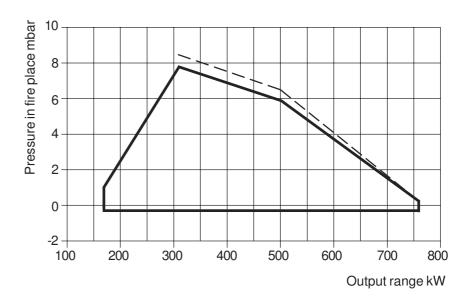
10


02. TECHNICAL DATA

Working field

B55-2

14-67 kg/h 166-795 kW


B55-2R
B55-2H/B55-2
Measured (test)

B55-3R

14-64 kg/h 166-759 kW

______ B55-3R __ _ _ _ _ Measured (test)

B65

24-99 kg/h 285-1174 kW

_____ B65 __ _ _ _ _ Measured (test) Pressure in fire place mbar 14 12 10 8 6 4 2 0 **-**2 400 700 800 900 1000 1100 1200 300 500 600 200

Unbroken line is the approved working field as per EN267.

Output range kW

02. TECHNICAL DATA

Nozzle table Pump pressure bar

		40			- 4.4			- 40				
Gph		10			11			12			13	
	kg/h	kW	Mcal/h	kg/h	kW	Mcal/h	kg/h	kW	Mcal/h	kg/h	kW	Mcal/h
2,75	10,24	121	104	10,73	127	109	11,21	133	114	11,67	138	119
3,00	11,16	132	114	11,71	139	119	12,23	145	125	12,73	151	130
3,50	13,03	154	133	13,66	162	139	14,27	169	146	14,85	176	151
4,00	14,89	176	152	15,62	185	159	16,31	193	166	16,97	201	173
4,50	16,75	199	171	17,57	208	179	18,35	218	187	19,10	226	195
5,00	18,62	220	190	19,52	231	199	20,39	242	208	21,22	252	216
5,50	20,48	243	209	21,47	255	219	22,43	266	229	23,34	277	238
6,00	22,34	265	228	23,42	278	239	24,47	290	250	25,46	302	260
6,50	24,20	287	247	25,37	301	259	26,51	314	270	27,58	327	281
7,00	26,06	309	266	27,33	324	279	28,55	339	291	29,70	352	303
7,50	27,92	331	285	29,28	347	299	30,59	363	312	31,83	377	325
8,00	29,79	353	304	31,23	370	318	32,63	387	333	33,95	403	346
8,50	31,65	375	323	33,18	393	338	34,66	411	353	36,07	428	368
9,00	33,59	398	343	35,14	417	358	63,71	435	374	38,19	453	389
9,50	35,37	419	361	37,09	440	378	38,74	549	395	40,31	478	411
10,00	37,23	441	380	39,04	463	398	40,78	484	416	42,44	503	433
11,00	40,96	486	418	42,94	509	438	44,86	532	457	46,68	554	476
12,00	44,68	530	456	46,85	556	478	48,94	580	499	50,92	604	519
14,00	52,12	618	531	54,65	648	557	57,10	677	582	59,41	705	606
16,00	59,57	706	607	62,46	741	637	65,26	774	666	67,90	805	692
18,00	67,02	795	683	70,27	833	717	73,41	871	749	76,39	906	779
20,00	74,47	883	759	78,08	926	796	81,57	967	832	84,87	1007	865

Pump pressure bar

Gph		14			15			16			17	
2,75	kg/h 12,11	kW 144	Mcal/h 123	kg/h 12,53	kW 149	Mcal/h 128	kg/h 12,95	kW 154	Mcal/h 132	kg/h 13,35	kW 158	Mcal/h 136
3,00	13,21	157	135	13,67	162	139	14,13	168	144	14,56	173	148
3,50	15,42	183	157	15,95	189	163	16,49	196	168	16,99	201	173
4,00	17,62	209	180	18,23	216	186	18,84	223	192	19,42	230	198
4,50	19,82	235	202	20,51	243	209	21,20	251	216	21,84	259	223
5,00	22,03	261	225	22,79	270	232	23,55	279	240	24,27	288	247
5,50	24,23	287	247	25,07	297	256	25,91	307	264	26,70	317	272
6,00	26,43	313	270	27,49	326	280	28,27	335	288	29,13	345	297
6,50	28,63	340	292	29,63	351	302	30,62	363	312	31,55	374	322
7,00	30,84	366	314	31,91	378	325	32,98	391	336	33,98	403	347
7,50	33,04	392	337	34,19	405	349	35,33	419	360	36,41	432	371
8,00	35,25	418	359	36,47	433	372	37,69	447	384	38,80	460	396
8,50	37,45	444	382	38,74	459	395	40,04	475	408	41,26	489	421
9,00	39,65	470	404	41,02	486	418	42,40	503	432	43,69	518	446
9,50	41,85	496	427	43,30	514	442	44,75	531	456	46,11	547	470
10,00	44,06	523	449	45,58	541	465	47,11	559	480	47,11	559	480
11,00	48,46	575	494	50,14	595	511	51,82	615	528	53,40	633	545
12,00	52,87	627	539	54,70	648	558	56,53	670	576	58,25	691	594
14,00	62,68	732	629	63,81	757	651	65,95	778	669	67,96	806	693
16,00	70,49	836	719	72,93	865	744	75,38	894	769	77,67	921	792
18,00	79,30	940	809	82,05	973	837	84,80	1006	865	87,38	1036	891
20,00	88,11	1045	899	91,17	1081	930	94,22	1117	961	97,09	1151	990

The table applies to oil with a viscosity of 4,4 mm²/s (cSt) with density 830 kg/m³.

Acceptance inspection

Ensure that everything is delivered and that there is no transport damage. If there is anything wrong with the delivery, please report it to the supplier. Any transport damage should be reported to the forwarding company.

Preparations for installation

Ensure that the size and capacity range of the burner are suitable for the boiler. Power data on the data plate refer to the minimum and maximum power of the burner.

Distribution of oil

To ensure satisfactory operation it is essential that the oil distribution system is correct.

Observe the following:

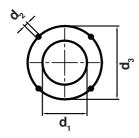
- See Pump instructions for choice of tube diameter, tube length and height difference.
- Fix the tubing with a minimum number of screw fittings.
- Fix the tubes so that the oil hoses are not subjected to tensile stress or sharp bending when swinging out the burner or removing it for service.
- Fit the oil filter 11/2" so that the filter cartridge can easily be replaced.

Electrical connections

The main power switch must be turned off before beginning electrical installation. If the boiler has a 7-pin and a 4-pin Eurostecker connector these will often connect straight to the burner. If not, use the connectors supplied. A 5-pin connector supplies the burner motor with a separate 3-phase supply. See connection under the Electrical equipment heading.

If another electrical connection is used than the one recommended by Bentone, there might be a risk of material damage or personal injury.

Choice of nozzle


See under Technical Data: Recommended nozzle and table of nozzles.

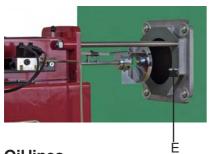
Setting of the brake plate and air flow

Basic burner settings can be made before commissioning as shown in the diagram. See Basic settings. Note that these are just basic settings and must be correctly adjusted when the burner has been started. Flue gas analysis and soot measurement should be carried out at this time.

Burner installation

Hole pattern

Check that the hole pattern on the boiler matches the pattern on the burner flange.


Flame head	d_1	d_2	d_3
B55	(160)* 165	M12	(226)* 254-295
B65	(160)* 210	M12	(226)* 254-295

* The hole pattern can be reduced if the burner pipe is fitted from the front and the heels in the flange are ground off.

Installing the burner

- 1. Separate the burner body and the flange.
- 2. Fit the flange and gasket on the boiler.
- 3. Insulate between the burner pipe and boiler door to reduce heat radiation.
- 4. Slide the burner body on to the guides.
- 5. Pull the brake plate off the oil pipe.
- 6. Fit the chosen nozzles (see Technical data).
- 7. Fit the brake plate and check the ignition electrodes (see Servicing the burner).
- 8. Slide the burner together and secure it with the nuts (E).

Oil lines

Return line Suction line

- 1. Check the size of the oil line (see Pump instructions).
- 2. An oil filer (1/2") must be fitted to the oil line. If an air trap is fitted then the oil filter should be fitted to the oil line before the air trap.
- 3. With a single pipe system the return plug must be removed (see Pump instructions).
- 4. When fitting oil hoses, check that the supply and return hoses are connected to the right couplings on the oil pump. The hoses must be positioned so that they are not subjected to tensile stress or sharp bending.
- 5. Bleed the oil system. The oil pump will be damaged if it is run dry.
- 6. The vacuum in the suction line should not exceed 0.3 bar during commissioning.

Electrical connections

- 1. Turn off the main power switch.
- 2. Connect the Eurostecker connectors (see Electrical equipment).
- 3. Check that the burner control switch (S1) is off.
- 4. Fit the Eurostecker connectors on the burner.
- 5. Turn on the main power switch.
- 6. Check the direction of rotation of the burner motor.

B65-2

B65-2R

Typical basic settings for B65-2H/B65-2/B65-2R/B65-3R

Choice of nozzle Burner output= 770 kW

B65-2H/B65-2/B65-2R Nozzle Stage 1 : 770 x 0,6 = 460 kW 460 / 11,86 = 38,8 kg/h

Nozzle Stage 2 : 770 x 0,4 = 310 kW 310 / 11,86 = 26,1 kg/h

According to the table of nozzles this gives the following nozzles:

Stage 1:8,50 Gph Stage 2: 6,00 Gph Pump pressure: 14 bar

Nozzle assembly Stage 2 = 15 **Basic settings** B65-2H

Stage 1 = 25° Air adjustment Stage 2 = 65°

Each graduation on the scale corresponds to 10°.

Basic settings Power outputs and nozzle choice from example.

> Nozzle assembly Stage 2 = 0° Damper motor Closed Blue cam

Stage 1 = 25° Orange cam MV 2 = 50° Black cam

Stage 2 = 65° Red cam

The black cam for Stage 2 (MV 2) must be placed between the cams for Stage 1 and Stage 2. The positions of MV 2 are determined by the boiler characteristics when switching between stages, but for a basic setting the black cam should be placed in the middle.

Basic settings Power outputs and nozzle choice from example.

> Stage 1 Nozzle assembly

Stage 2 = 15

= 0° Closed Blue cam Damper motor

Stage 1 = 25° Orange cam = 50° Black cam MV 2 Stage 2 = 65° Red cam

The black cam for Stage 2 (MV 2) must be placed between the cams for Stage 1 and Stage 2. The positions of MV 2 are determined by the boiler characteristics when switching between stages, but for a basic setting the black cam should be placed in the middle.

Choice of nozzle Burner output = 880 kW

B65-3R Nozzle 880 / 3 = 293 kW 293 / 11,86 = 24,7 kg/h

According to the table of nozzles this gives the following nozzles:

Stage 1:5,50 Gph Stage 2: 5,50 Gph Stage 3: 5.50 Gph

Pump pressure: 14 bar

Basic settings Power outputs and nozzle choice from example. B65-3R

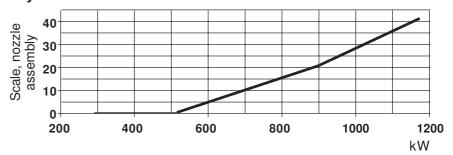
> Nozzle assembly Stage 1/2 = 5Stage 3 = 20

Damper motor Stage 1 = 10° Blue cam

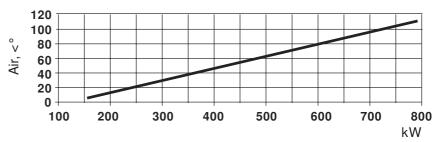
MV 2 = 30° Black cam Stage 2 = 44° Orange cam = 60° MV 3 Green cam Stage 3 = 80° Red cam

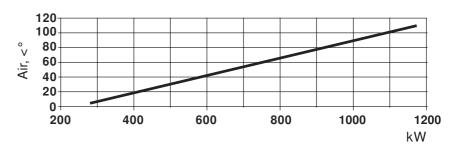
The cams for Stage 2 (MV 2) and Stage 3 (MV 3) must be placed between the cams for Stage 1 and Stage 2, and between Stage 2 and Stage 3, respectively. The positions of MV 2 and MV 3 are determined by the boiler characteristics when switching between stages, but for a basic setting the cams (MV2 and MV3) should be placed in the middle.

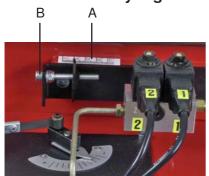
15


171 725 10 04-01

04. BASIC SETTINGS


Set values for nozzle assembly B55

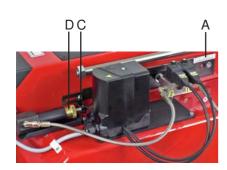

Set values for nozzle assembly B65


Set values for air damper B55

Set values for air damper B65

Nozzle assembly regulation – fixed brake plate

Nozzle assembly regulation is used to achieve the most favourable pressure drop possible across the brake plate.


Nozzle assembly regulation should be adjusted for Stage 2 output.

Adjustment

Adjust to the desired position on the scale (A) using the set screw (B) (turning anti-clockwise reduces the pressure drop and moves the brake plate outwards).

If pulsation occurs, the pressure drop across the brake plate can be altered until pulsation stops.

Nozzle assembly regulation – adjustable brake plate

Nozzle assembly regulation is used to achieve the most favourable pressure drop possible across the brake plate for each output stage.

Two nozzles

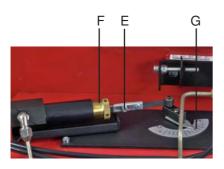
Nozzle assembly regulation adjusts the position of the brake plate between Stage 1 and Stage 2 by means of a hydraulic piston.

Three nozzles

Nozzle assembly regulation adjusts the position of the brake plate between Stage 2 and Stage 3 by means of a hydraulic piston.

Low load

Undo the locking nut.


Adjust to the desired position on the scale (A) by sliding the plate to the desired position. Tighten the locking nut (C).

High load

Adjust to the desired position on the scale (A) using the set screw (D) (turning anti-clockwise reduces the pressure drop and moves the brake plate outwards).

If pulsation occurs, the pressure drop across the brake plate can be altered until pulsation stops.

Hydraulic air adjustment

Stage 1

Set the control switch (S2) to low load (I). Undo the screw (E), turn the damper to the desired position and retighten the screw (E).

Stage 2

Set the control switch (S2) to high load (I). Use the adjuster pin to screw the sleeve (F) in (to reduce) or out (to increase). The position of the damper can be read from the damper scale (G). Carry out flue gas analysis to check the air settings.

Damper motor 2-Stage

The damper motor rotates the damper between three preset positions. These positions are controlled at the motor by micro-switches, the switching positions of which are set using the coloured cams. There is also a black cam, which controls the activation of solenoid valve 2.

If the air flow requires adjustment:

Remove the cover from the damper motor and change the positions of the cams by turning them with the aid of the tool supplied. To deactivate a cam while you are turning it we recommend that you switch to a different stage and then switch back after adjustment is complete in order to check the result.

Stage 1

Adjust the operating switch to Stage 2 (II).

- * Reduce the air volume:
 - Turn orange cam towards 0°.
- * Increase the air volume:

Turn orange cam towards 90°.

Adjust the operating switch back to low capacity and check.

Stage 2

Adjust the operating switch to Stage 1 (I).

- * Reduce the air volume:
- Turn red cam towards 0°.
- * Increase the air volume:

Turn red cam towards 90°.

If the red cam is moved, change the black cam as much. Adjust the operating switch back to Stage 2 and ensure that the correct air volume has been obtained.

Closed

The blue cam is the limit position for fully closed damper and it is normally not necessary to change it.

Releasing

The damper motor can be released using the white release button. This feature simplifies replacement of the damper motor.

To release. Press down the shaft and slide it outwards until it disengages

from the milled slot.

To engage. Slide the shaft inwards and release. Adjust the position of the

motor so that the cogs mesh with each other.

Solenoid valve Stage 2 (black)

Stage 2 (red)

Stage 1 (orange)

Closed damper (blue)

Releasing button **N.B.** The upper position is the standard position

Damper motor 3-Stage

The damper motor rotates the damper between three preset positions. These positions are controlled at the motor by micro-switches, the switching positions of which are set using the coloured cams. There is also a black cam, which controls the activation of solenoid valve 2 and a green one which controls the activation of solenoid valve 3.

If the air flow requires adjustment:

Remove the cover from the damper motor and change the positions of the cams by turning them with the aid of the tool supplied. To deactivate a cam while you are turning it we recommend that you switch to a different stage and then switch back after adjustment is complete in order to check the result.

Stage 1

Adjust the operating switch to Stage 2 (II).

- * Ředuce the air volume:
- Turn blue cam towards 0°.
- * Increase the air volume:
 - Turn blue cam towards 90°.

Adjust the operating switch back to Stage 1 and check.

Stage 2

Adjust the operating switch to Stage 1 (I).

- * Reduce the air volume:
 - Turn orange cam towards 0°.
- * Increase the air volume:

Turn orange cam towards 90°.

If the orange cam is moved, change the black cam as much. Adjust the operating switch back to Stage 2 and ensure that the correct air volume has been obtained.

Stage 3

Adjust the operating switch to Stage 2 (II).

- * Reduce the air volume:
- Turn red cam towards 0°.
- * Increase the air volume:
 - Turn red cam towards 90°.

If the red cam is moved, change the green cam as much. Adjust the operating switch to Stage 3 (III) and ensure that the correct air volume has been obtained.

Releasing

The damper motor can be released using the white release button. This feature simplifies replacement of the damper motor.

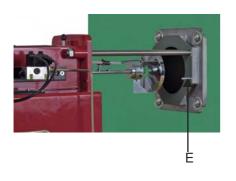
To release. Press down the shaft and slide it outwards until it disengages

from the milled slot.

To engage. Slide the shaft inwards and release. Adjust the position of the motor so that the cogs mesh with each other.

Solenoid valve Stage 3 (green)

Solenoid valve Stage 2 (black)


Stage 3 (red)

Stage 2 (orange)

Stage 1 (blue)

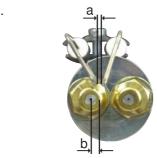
Releasing button
N.B. The upper
position is the
standard position

Servicing the burner device Removal and fitting

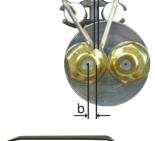
- 1. Turn off the main power switch and disconnect the Eurostecker connectors from the burner.
- 2. Undo the nuts (E) and pull out the burner body on its guides.
- 3. Undo and remove the brake plate from the oil pipe.
- 4. Unscrew the nozzles.
- 5. Fit the nozzles.
- 6. Fit the brake plate (see Adjusting the brake plate).
- 7. Check the ignition electrodes (see Adjusting ignition electrodes). Replace if necessary.
- 8. Slide the burner together and secure it with the nuts (E).
- 9. Connect the Eurostecker connectors and turn on the main power switch.
- 10. Check combustion*.

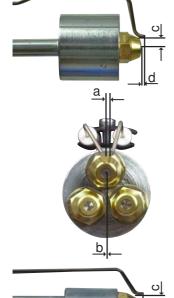
Note:

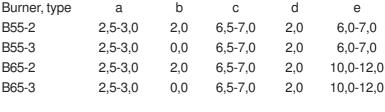
After servicing/replacing components that affect combustion, a flue gas analysis and soot measurement must be carried out on the installation.


NOTE!

If nozzles are dirty always replace them with new ones. Do not clean them. On boilers with a hinged door, the door can be opened and the burner pipe can be removed from the flange and pulled forwards.

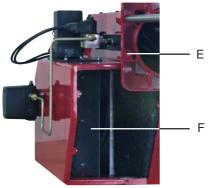

With burners that have an extended burner tube, the burner body must be lifted off the guides, or the oil pipe must be disconnected from the solenoid valves to be removed for servicing.

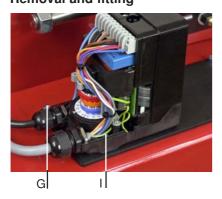

Adjusting the ignition electrodes and brake plate

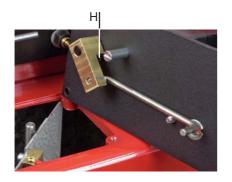

Adjustment dimensions for ignition electrodes.

NOTE!

It is important that the spark does not strike the brake plate or nozzle.

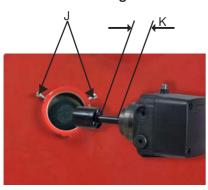

20


171 755 12 04-01


Servicing the air damper

Removal and fitting

Replacing the damper motor Removal and fitting



- 1. Turn off the main power switch and disconnect the Eurostecker connectors from the burner.
- 2. Undo the nuts (E) and pull out the burner body on its guides.
- 3. Remove the intake grille from the air intake.
- 4. Release the damper motor.
- 5. Clean the air damper (F) and the intake. Lubricate the damper shaft if applicable.
- 6. Re-engage the damper motor.
- 7. Fit the intake grille over the air intake.
- 8. Slide the burner together and secure it with the nuts (E).
- 9. Connect the Eurostecker connectors and turn on the main power switch.
- 10. Check combustion*.
- Turn off the main power switch and disconnect the Eurostecker connectors from the burner.
- 2. Note the positions of the cables and then disconnect the cables from the damper motor
- 3. Release the damper motor and lock it at 30°.
- 4. Fully open the insert.
- 5. Undo the screws (G) that secure the mounting plate for the damper motor.
- 6. Raise it carefully so that the air damper stays in the air intake.
- 7. Disconnect the (H) link arm from the motor shaft.
- 8. Separate the damper motor from the mounting plate (I).
- 9. Refit the damper motor on the mounting plate.
- 10. Connect the link arm to the damper motor shaft. It is important that the screw is at right angles to the plane of the shaft.
- 11. Release the damper motor and lock it at 30°.
- 12. Fit the mounting plate by guiding the link arm into the attachment point on the air damper and the air damper shaft into the mounting plate (make sure that the bushings are fitted between the mounting plate and damper shaft).
- 13. Release the damper motor and check that the damper moves freely. Close the damper and zero the graduated scale on the damper motor.
- 14. Make the electrical connections to the damper motor.
- Reset the damper motor cams.
- 16. Connect the Eurostecker connectors and turn on the main power switch.
- 17. Check combustion.*

Replacing the oil pump B55/B65

Removal and fitting

- 1. Turn off the main power switch and disconnect the Eurostecker connectors from the burner.
- 2. Disconnect the oil hoses from the pump.
- 3. Undo the screws (J) and pull out the oil pump.
- 4. Measure the distance between the pump mounting and the pump coupling (K).
- 5. Transfer the pump coupling to the new pump and adjust to give the same spacing between the pump and pump coupling as before (K)
- 6. Fit the oil pump on the burner and tighten the screws (J). (It is important that splines on the pump shaft align correctly with the pump coupling.)
- 7. Fit the oil hoses.
- 8. Connect the Eurostecker connectors and turn on the main power switch.
- 9. Bleed the pump, start the burner and adjust to the correct oil pressure.
- 10. Check combustion.*

Note:

After servicing/replacing components that affect combustion, a flue gas analysis and soot measurement must be carried out on the installation.

06. INSTRUCTIONS PUMP TYPE RSA 95 & 125

Technical data

RSA 95 RSA 125

Viscosity range: 1,3-18,0 mm²/s
Pressure range at viscosity 1,3-1,8: 5,5-12,0 bar
Pressure range at viscosity 1,8-18,0: 2,5-21,0 bar
Oil temperature: -10 to+70 ℃

Nozzle capacity at viscosity 4,3: 150-190 l/h 215-260 l/h Gearwheel capacity: 225 l/h 294 l/h

Max pressure on suction- and return side: 4 bar

Components

- 1. Pressure gauge port G 1/8"
- 2. Nozzle port G 1/4"
- 3. Suction line G 1/4"
- 4. Suction line G 1/4"
- 5. Return line G 1/4"
- 6. Return line G 1/4"
- 7. By-pass plug
- 8. Pressure adjustment, 4 mm Allen key

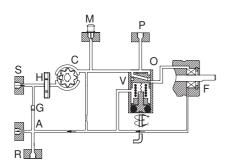
Mounting/dismounting by-pass plug

In a 2-pipe-system excess oil is led back direct to the oil tank. In a 1-pipe-system the by-pass plug must be removed so that there is a free passage back to the suction side through the return line with the return port closed. (Pos.7).

Purging

On 1-pipe systems it is necessary to purge the pump. On 2-pipe systems purging is automatic through the return line.

Replacing the filter


Replace the oil fiter on the oil pump as follows.

- Close the oil valves.
- Unscrew the cover (4 x 5 mm Allen screws).
- Replace the oil filter.
- Replace the cover gasket.
- Refit the cover.
- Open the oil valves.

06. INSTRUCTIONS PUMP TYPE RSA 95 & 125

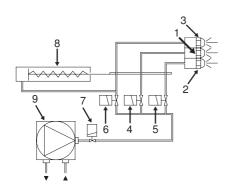
Function Danfoss RSA 95 - 125

When the pump is started oil is drawn through the suction port "S" via filter "H" to the suction side of the gearwheel set "C". From here the gearwheel set pumps the oil to the pressure side and at the same time the oil becomes pressurized. The oil is led to cut-off and regulating valve "V" which opens when the set pressure is reached.

The pressure is controlled and kept constant by regulating valve "V". At the same time the gearwheel set "C" distributes the oil through nozzle port "P" and pump return side "R" via the shaft seal "F".

The quantity of oil supplied to nozzle port "P" is determined by the pressure set on regulating valve "V" and the nozzle/resistance in the nozzle line.

In 2-pipe-systems excess oil is led back to the oil tank. In 1-pipe-systems the by-pass plug "A" must be removed to give free flow back to the suction side via return line "G" with return port "R" closed.

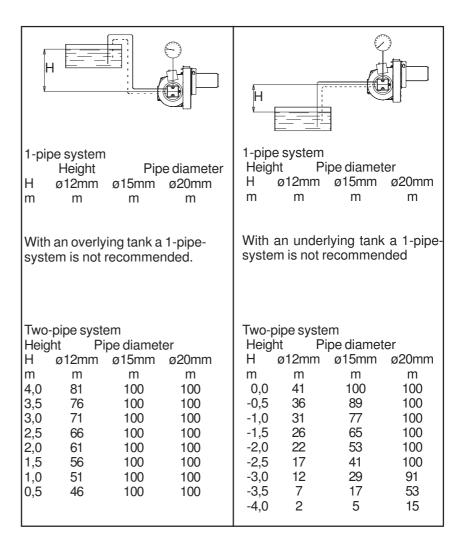

When the pump is stopped, the pump output drops and produces a drop in the oil pressure. The spring in the regulating valve presses the regulating piston forward until it seals in port "P". This cuts off the oil flow to the nozzle and ensures that the nozzle line is effectively shut off.

If the pump is overloaded, i.e. more oil is demanded than the gearwheel is able to pump under the given conditions, the oil pressure falls below the set value because the piston of the regulating valve moves towards its closed position and partially or wholly cuts off the return oil via port "O".

This can be remedied by

- reducing the pump pressure
- reducing the capacity, i.e. smaller nozzle or greater resistance
- changing to a pump with higher capacity

Schematic diagram



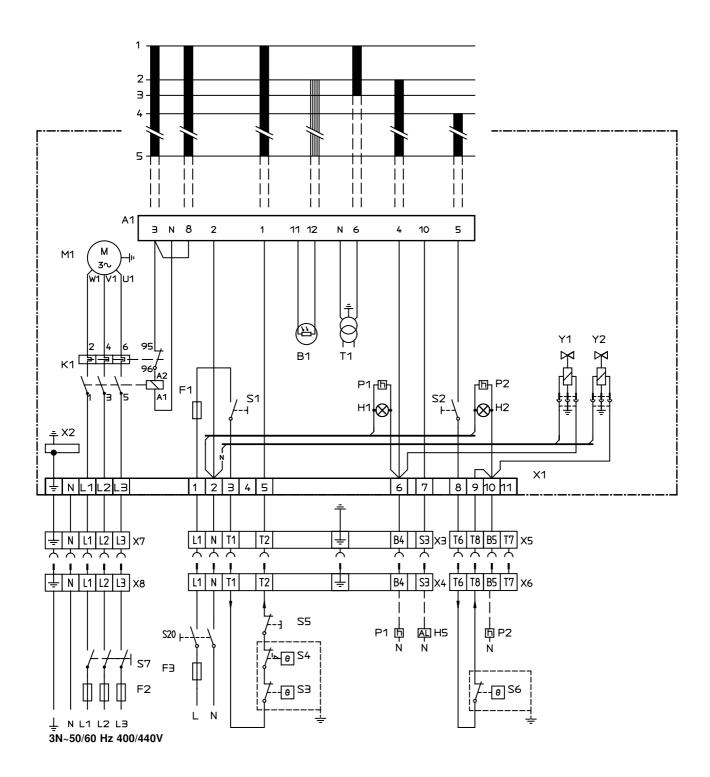
- Nozzle Stage 1
 Nozzle Stage 2
 Nozzle Stage 3
- 4. Solenoid valve Stage 1 (Y1
- 5. Solenoid valve Stage 2 (Y2)
- 6. Solenoid valve Stage 3 (Y3)
- Safety valve for nozzle (Y1S)
 Only for capacities over 100 kg/h or on special request by customer.
- 8. Hydraulic control device Only on burners with hydraulic air control or nozzle assembly optimisation.
- 9. Oil pump

Items 3 and 6 are not fitted to two-stage burners. Item 8 is connected after solenoid valve nozzle 2 (Y2).

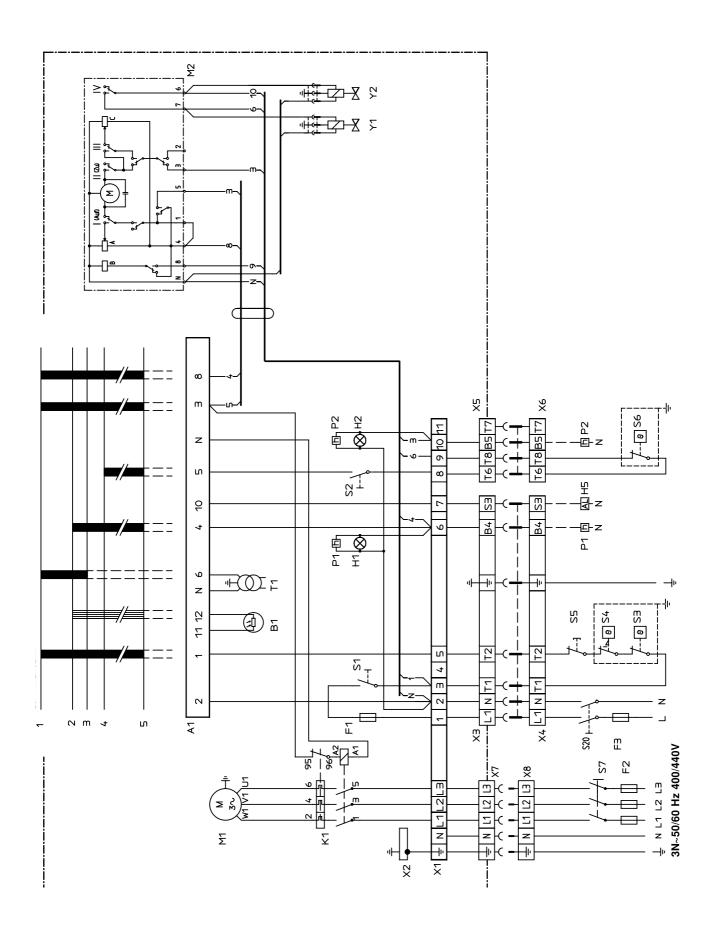
06. INSTRUCTIONS PUMP TYPE RSA 95 & 125

Suction line tables

The suction line tables consist of theoretically calculated values where the pipe dimensions and oil velocity have been matched so that turbulences will not occur. Such turbulences will result in increased pressure losses and in acoustic noise in the pipe system.


In addition to drawn copper piping a pipe system usually comprises 4 elbows, a non-return valve, a cut-off valve and an external oil filter.

The sum of these individual resistances is so insignificant that they can be disregarded.


The tables do not include any lengths exceeding 100 m as experience shows that longer lengths are not needed. The tables apply to a standard fuel oil of normal commercial quality according to current standards. On commissioning with an empty tube system the oil pump should not be run without oil for more than 5 min. (a condition is that the pump is being lubricated during operation).

The tables state the total suction line length in metres at a viscosity of 6.0 mm²/s.

Wiring diagram LOA44.../LMO24.255... (B55-2H/B65-2H)

Wiring diagram LOA44.../LMO24.255... (B55-2/B65-2/B55-2R/B65-2R)

List of components LOA44.../LMO24.255... (B55-2H/B65-2H/B55-2R/B65-2R)

			- ,
A1	Oil burner control		Control thermostat, high/low
	Photoresistor	_	Main switch 3-fas
F1	Operating fuse	S20	Main switch 1-fas
F2	Fuse	T1	Ignition transformer
F3	Fuse	X1	Connection terminal board
H1	Lamp, low capacity	X2	Earth terminal
H2	Lamp, high capacity	X3	Plug-in contact "Euro", burner
H5	Alarm signal 230V	X4	Plug-in contact "Euro", boiler
K1	Thermal overload protection	X5	Plug-in contact "Euro",
M1	Burner motor		high/low burner
M2	Damper motor	X6	Plug-in contact "Euro",
	SQN75.244A21B		high/low boiler
S1	Operating switch	X7	Plug-in contact "Euro"
S2	Operating switch,		3-phase, burner
	high/low capacity	X8	Plug-in contact "Euro",
S3	Operation thermostat		3-phase, boiler
S4	Temperature limiter	Y1	Solenoid valve 1
S5	Micro switch for	Y2	Solenoid valve 2
	hinged door		

If S6 is missing connection between T6 and T8. Mains connection and fuse in accordance with local regulations.

Function LOA44.../LMO24.255...

1. Switch on operating switch and twin thermostat

The burner motor starts, an ignition spark is formed, the prepurge goes on till the prepurge period expires and the solenoid valve 1 opens (2).

2. Solenoid valve 1 opens

Oil mist is formed and ignited. The photocell indicates a flame.

3. The safety time expires

- a. If no flame is established before this time limit the control cuts out.
- b. If for some reasons the flame disappears after this time limit, the burner will make an attempt to re-start.

4. Full load thermostat ON

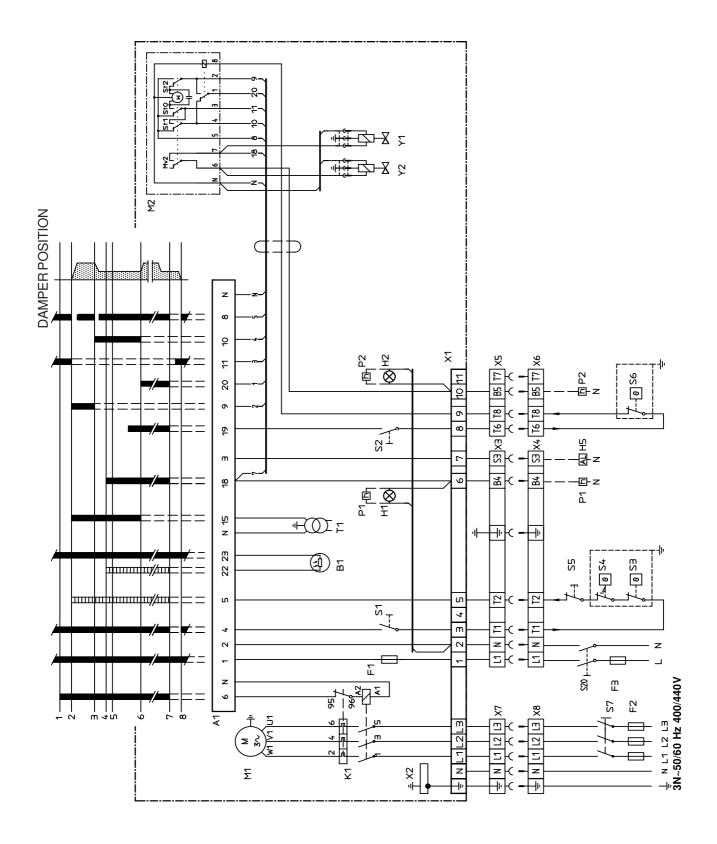
The burner is in operating position and can now change between high and low capacity.

4-5. Operating position

If the burner operation is interrupted by means of the main switch or the thermostat, a new start takes place when the conditions in accordance with point 1 are fulfilled.

The oil burner control cuts out

A red lamp in the control is lit. Press the reset button and the burner re-starts.


Technical data LOA44.../LMO24.255...

	LOA44	LMO24
Pre-ignition time:	25 s	25 s
Pre-purge time	25 s	26 s
Post-ignition time:	2 s	5 s
Safety lock-out time:	< 5 s	< 5 s
Reset time after lockout:	2 s	< 1 s
Reaction time on flame failure:	< 1 s	< 1 s
Ambient temperature: from - 20	to + 60 °C	from - 5 to + 60 ℃
Min. current with flame established:	58 µ A	45 μ A
Max. photo current at start:	5,5 μ Α	5,5 μ Α
Enclosure:	IP 40	IP 40

Control of photo current

Current through photo unit is measured with a d.c. ammeter (a moving coil instrument connected in series with the photo unit).

Wiring diagram LAL 1... (B55-2/B55-2R/B65-2/B65-2R)

09. ELECTRIC EQUIPMENT

List of components LAL 1... (B55-2/B55-2R/B65-2/B65-2R)

A1	Oil	burner	control
\neg ı	OII	Dulliel	COLLIG

B1 Photoresistor

F1 Operating fuse

F2 Fuse

F3 Fuse

H1 Lamp, low capacity

H2 Lamp, high capacity

H5 Alarm signal 230V

K1 Thermal overload protection

M1 Burner motor

M2 Damper motor

L&S SQN75.294A21B

P1 Time meter, low capacity (optional)

P2 Time meter, high capacity (optional)

S1 Operating switch

S2 Operating switch, high/low capacity

S3 Operation thermostat

S4 Temperature limiter

S5 Micro switch for hinged door

S6 Control thermostat, high/low capacity

S7 Main switch 3-fas

S20 Main switch 1-fas

T1 Ignition transformer

X1 Connection terminal board

X2 Earth terminal

X3 Plug-in contact "Euro", burner

X4 Plug-in contact "Euro", boiler

X5 Plug-in contact "Euro", high/low burner

X6 Plug-in contact "Euro", high/low boiler

X7 Plug-in contact "Euro", 3-phase, burner

X8 Plug-in contact "Euro" 3-phase, boiler

Y1 Solenoid valve 1 ".

Y2 Solenoid valve 2

If S6 is missing connection between T6 and T8.

Mains connection and fuse in accordance with local regulations.

Function LAL 1...

1. Operating switch ON, twin thermostat ON Air damper closed

The burner motor starts.

2. Ignition spark is formed

Ignition spark is formed. Air damper motor opens the damper to full load position.

3. Air damper motor closes

The air damper motor closes to low load position.

4. Solenoid valve opens

The oil mist is ignited. The photoresistor indicates a flame.

5. The safety time expires

- a. If there is no flame established **before** this time limit the burner control locks out.
- b. If the flame for some reason disappears after this time limit the burner control also locks out. If a repetition of the start-up sequence is desired, the wire link marked "Repetition" on the side of the base plate of the control must be removed.

6. Full load theromstat ON

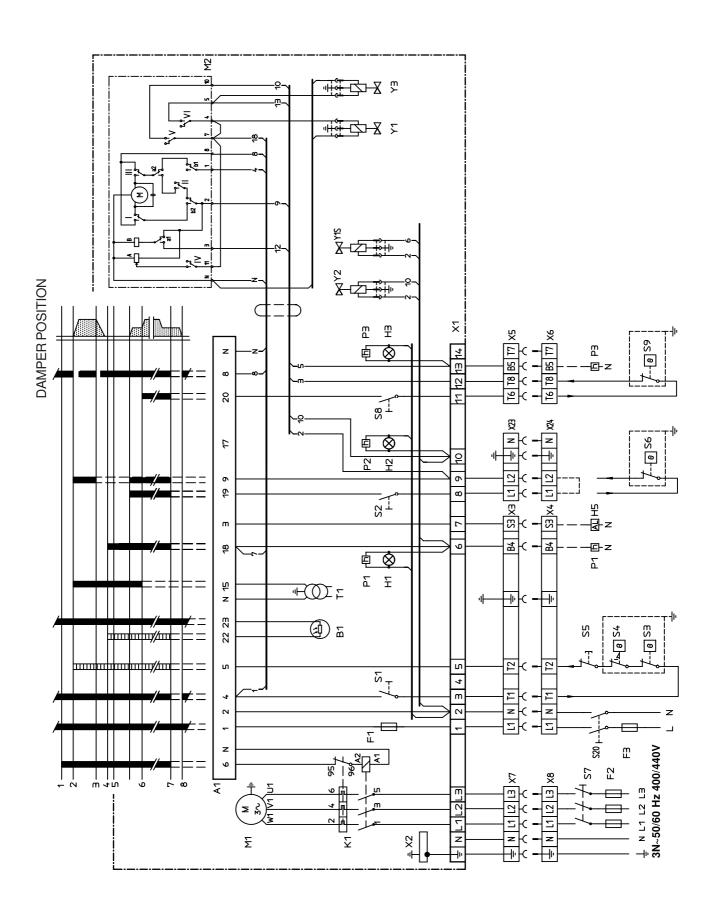
The burner is in operating position. It can now change over to full load and then it alternates between full load and low load.

7. Stop

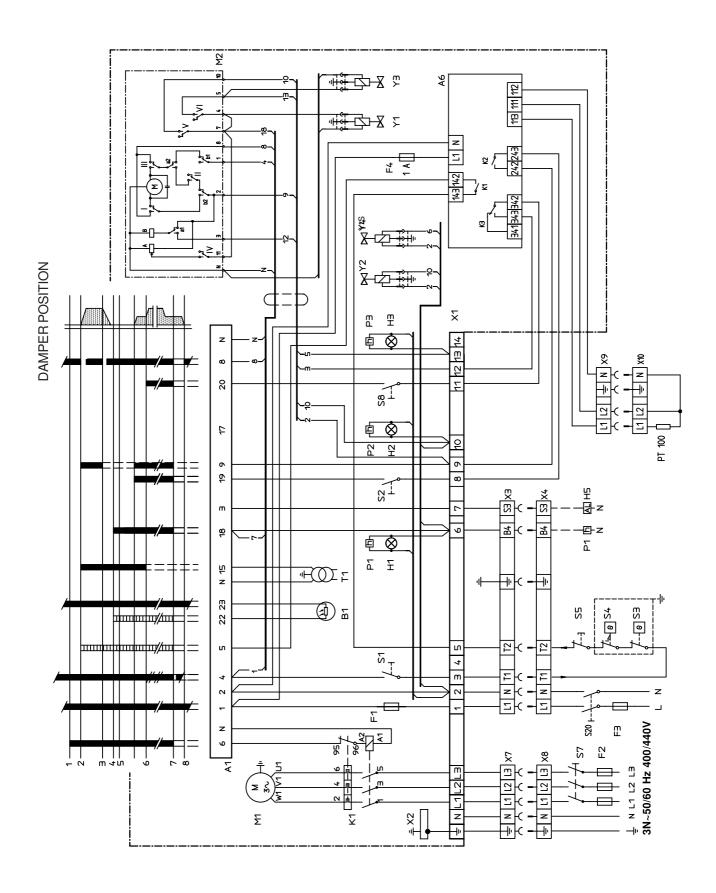
The burner operation is interrupted by means of the operating switch or if the thermostat switches off. The air damper closes completely and the oil burner control continues to position 8 for a new start.

8. State of rest

The burner is waiting for a new start.


The control locks out

Note!


A red lamp in the control is lit. Move the transparent cover aside and restart the burner by pressing the reset button.

In the window of the control symbols appear showing in which position the control locks out, see the adjoining explanation.

Wiring diagram LAL 1... (B55-3/B65-3)

Wiring diagram LAL 1... (B55-3/B65-3 with regulator RT 16)

09. ELECTRIC EQUIPMENT

List of components LAL 1... (B55-3/B65-3 och B55-3/B65-3)

A1 A6 B1 F2 F3 F4 H1 H2 H3 H5 K1 M2 P1 S2 S3 S4 S5	Oil burner control Regulator RT 16 Photoresistor Operating fuse Fuse Fuse Fuse 1A Lamp, Stage 1 Lamp, Stage 2 Lamp, Stage 3 Alarm signal 230V Thermal overload protection Burner motor Damper motor L&S SQN75.436A21B Time meter, Stage 1 Time meter, Stage 2 Time meter, Stage 2 Time meter, Stage 3 Operating switch Operating switch, Stage 2 Operation thermostat Temperature limiter Micro switch for hinged door	S20 T1 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X23 X24 Y1 Y2	Main switch 1-phase Ignition transformeR Connection terminal board Earth terminal Plug-in contact "Euro", burner Plug-in contact "Euro", boiler Plug-in contact "Euro", Stage 3 burner Plug-in contact "Euro", Stage 3 boiler Plug-in contact "Euro" 3-phase, burner Plug-in contact "Euro", 3-phase, boiler Plug-in contact regulator, burner Plug-in contact regulator, PT 100-resistance thermometer Plug-in contact "Euro", Stage 2 burner Plug-in contact "Euro", Stage 2 boiler Solenoid valve 1 Solenoid valve 2
S4	Temperature limiter		Stage 2 boiler
S5			
S6	Control thermostat, Stage 2	Y3	Solenoid valve 3
S7 S8 S9	Main switch 3-phase Operating switch, Stage 3 Control thermostat, Stage 3		Safety solenoid valve (Only ers with a capacity over 100 kg/h)

If S6 is missing connection between L1 and L2.

If S9 is missing connection between T6 and T8.

Mains connection and fuse in accordance with local regulations.

Function LAL 1...

1. Operating switch ON, twin thermostat ON Air damper closed The burner motor starts.

2. Ignition spark is formed

Ignition spark is formed. Air damper motor opens the damper to stage 3.

3. Air damper motor closes

The air damper motor closes to stage 1.

4. Solenoid valve 1 opens

The oil mist is ignited. The photoresistor indicates a flame.

5. The safety time expires

- a. If there is no flame established before this time limit the burner control locks out.
- b. If the flame for some reason disappears **after** this time limit the burner control also locks out. If a repetition of the start-up sequence is desired, the wire link marked "Repetition" on the side of the base plate of the control must be removed.

6. Thermostat and switch Stage 2 ON

The burner can now change over to stage 2.

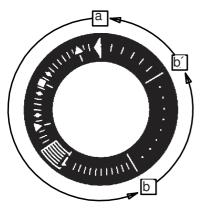
7. Thermostat and switch Stage 3 ON

The burner can now change over to stage 3.

8-9. Operating position

The burner can now change between stage 1, 2 and 3. The burner operation is interrupted by means of the operating switch or the thermostat.

The control locks out


A red lamp in the control is lit. Move the transparent cover aside and restart the burner by pressing the reset button.

Note!

In the window of the control symbols appear showing in which position the control locks out, see the adjoining explanation.

Control programme under fault conditions and lock-out indication LAL 1...

In the event of fault conditions the sequence switch stops and simultaneosly the lock-out indicator. The symbol appearing above the reading mark indicates kind of fault:

■ No start,

because e.g., the CLOSE signal has not been supplied to terminal 8 by the limit switch, or a contact has not been closed between terminals 4 and 5.

Shut-down of start-up sequence,

because the OPEN signal has not been supplied to terminal 8 by the limit switch. Terminals 6, 7 and 15 remain under voltage until the fault is corrected.

Lock-out

due to a fault in the super-vision circuit.

▼ Shut-down of start-up sequence,

because the position signal for the low-flame position has not been supplied to terminal 8 by the auxiliary switch. Terminals 6, 7 and 15 remain under voltage until the fault is corrected.

1 Lock-out,

because no flame signal has been received on completion of the saftey time.

I Lock-out

because the flame signal has been lost during burner operation or air pressure failure has occurred.

◀ Lock-out on completion or after completion of control programme sequence

due to extraneous light (e.g. flame not extinguished, leaking fuel valves) or due to a faulty flame signal (e.g. fault in flame supervision circuit or similar).

a - b Start-up sequence

b - b' "idle steps"

up to the self shutdown of the sequence switch

b (b') - a Post-purge sequence

Technical data LAL 1...

Pre-ignition time:	from start
Pre-purge time with full air volume:	22 s
Safety time:	5 s
Post-ignition time:	15 s
Interval between Mv1 and Mv2:	7,5 s
Reset after lock-out:	Immediately
Time of re-start:	47 s
Ambient temperature:	- 20 to + 60 ℃
Min. required current at 220 V and 240 V respectively:	95/105 μA
Max. current:	160 μΑ
Protective standard:	IP40

Control of photo current

Current through photo unit is measured with a d.c. ammeter (a moving coil instrument connected in series with the photo unit).

Type designation: 703011/10-001-000-101-23/000

Manual RT 16

Change to the next level with the PGM button (press for 2 secs.)

- * Go on to the next parameter with PGM
- * Go back to normal showing with EXIT (goes back automatically after 30 secs. if no change has been done)
- * Change the value by ▲ or ▼. The value increases if the button is pressed down. The new value will be stored after 2 secs (the display flashes)

Normal showing

The display shows the present value and the setpoint. The setpoint is to be changed with \blacktriangle or \blacktriangledown .

Parameter level

The PGM-button should be pressed for 2 secs. to come down to this level, where the value for the limit alarm and the parameters of the regulator should be programmed.

Configuration level

At position y.0 in the parameter level the PGM-button should be pressed for 2 secs. to come down to this level. At this level the basic setting of the regulator should be made.

When setting the configuration codes, the following applies:

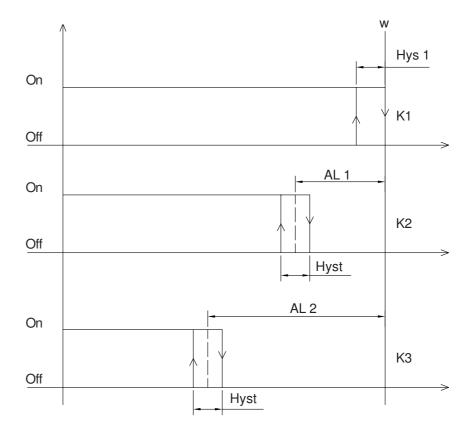
Choose the digit with ▼ (actual digit flashes)

Change the digit with A

Confirm the code with PGM (regret with EXIT)

Parameter level

Parameter	Value	Remark
AL1	6	Limit alarm relatively W
AL2	10	Limit alarm relatively W
Pb1	0	
dt	0	
rt	0	
Cy1	0.5	
Hys1	3	
y.0	0	(PGM 2 secs. next level)
y 1	100	
y 2	0	
dF	0.6	
rASd	0	
SP1	40	Setpoint 1
SP2	0	Setpoint 2


Configuration level

PGM >2 secs

	Parameter	Value	Remark
•	C111	0000	
/	C112	4400	
S	C113	0013	
	C114	0104	
	SCL	0	
	SCH	100	
	SPL	0	Min setpoint
	SPH	100	Max setpoint
	OFFS	0	
	Hyst	4	Hysteresis AL1 AL2

For a more detailed description please see the manual accompanying the regulator.

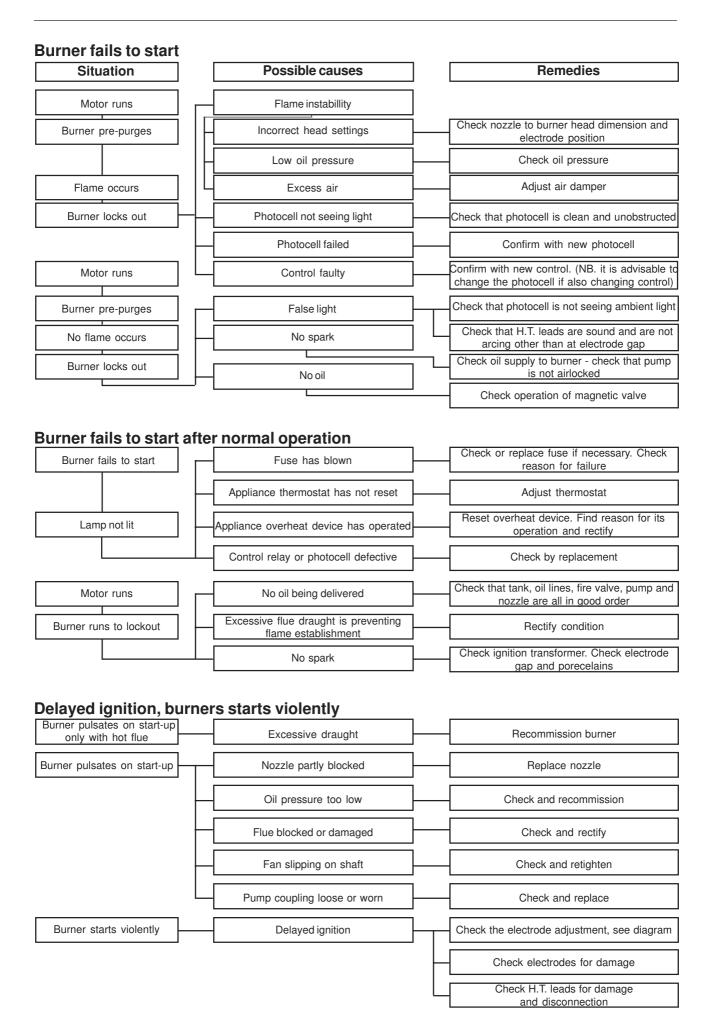
Function RT 16

W	=	Setpoint	
K1	=	Relay outlet 1	(Stage 1)
K2	=	Relay outlet 2	(Stage 2)
K3	=	Relay outlet 3	(Stage 3)
Hys1	=	Switch on/off hysteresis	(Stage 1)
Hyst	=	Switch on/off hysteresis	(Stage 2, Stage 3)

Example of the RT 16 operation mode

Stage 1

Start = W-Hys1 (80-3=77) Stop = W (80)


Stage 2

Start = W-AL1-Hyst/2 (80-6-4/2=72) Stop = W-AL1+Hyst/2 (80-6+4/2=76)

Stage 3

Start = W-AL2-Hyst/2 (80-10-4/2-68) Stop = W-AL2+Hyst/2 (80-10+4/2=72)

10. FAULT LOCATION

11. SPARE PART LIST

1(3) 171 745 01 04-01

11. SPARE PART LIST

1. Flame cone		10. Axle compl.		27. Pump
304mm	119 728 0105	55-2, 65-2	918 298 02	RSA95 110 197 2
404mm	119 728 0205	55-3, 65-3	918 298 01	55
504mm	119 728 0305			RSA125 110 197 1
55		11. Adjustment bar		65
288mm	119 721 0105	55-3, 65-3	118 450 01	
388mm	119 721 0205	55-2,65-2	118 290 01	28. Solenoid valve 919 946 0
488mm	119 721 0305	00 =, 00 =		compl.
65	110 721 0000	12. Adjustment devi	ice	Coil 115 971 0
00		55-R, 65-R	918 299 04	110 3710
2. Nozzle assem	ably	33 11,03 11	310 233 04	29. Solenoid valve 919 947 0
380mm	919 746 01	13. Gasket set		
			110 000 00	bloc compl.
480mm	919 746 02	55-R, 65-R	118 322 02	55-2, 65-2
580mm	919 746 03	dd No Iolo	440 404 04	00 0 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2
55-2		14. Nozzle key	113 461 01	30. Solenoid valve 919 947 0
380mm	919 749 01			bloc compl.
480mm	919 749 02	15. O-ring, nozzle a		55-3, 65-3
580mm	919 749 03	55-3, 65-3	113 168 02	
65-2				31. Connecting pipe 118 237 0
368mm	919 750 01	16. Fixing flange	118 490 02	pump-solenoid valve bloc
468mm	919 750 02	compl.		compl.
568mm	919 750 03	Guide bars	118 093 02	55-2H, 65-2H
55-3		Fixing flange	118 235 01	
368mm	919 751 01	0 0		32. Connecting pipe 118 428 0
468mm	919 751 02	17. Gasket	112 788 03	solenoid valve-
568mm	919 751 03	TT Gasket		adjustment device
65-3	01010100	18. Gasket	118 398 01	55-2H, 65-2H
00 0		fan housing-flar		33 211,03 211
3. Nozzle line		lamousing-nar	ige	33. Nipple, connection 118 423 0
368mm	118 414 01	19. Motor		solenoid valve bloc
			- 100 01601	Soleriold valve bloc
468mm	118 414 02	0,75kW3-phase	e 120 316 01	04 A
568mm	118 414 04	55	100.010.00	34. Angle 118 404 0
55-3,65-3	440 40404	1,5kW 3-phase	120 316 03	55-2,65-2
380mm	118 104 01	65		
480mm	118 104 02			35. Coppergasket 110 2121
580mm	118 104 04	20. Cable 700mm	119 449 03	10,2x15x1,5
55-2,65-2				
		21. Fan wheel		36. Cable solenoid valve
Brake plate		224x62x19	118 245 04	Stage1,3 700mm 115 975 0
55-2, Ø120mr	n 119 347 01	55		Stage 2 900mm 115 975 0
55-3, Ø120mr	n 119 735 01	224x82x19	118 245 05	
65-2,Ø120mr	n 112 841 15	65		37. Hydraulic hose 118 293 0
65-3,Ø120mr	n 112 841 19			55-2,65-2
•		22. Drive coupling	118 115 03	
5. Bracket	112 738 01	compl.		38. Hydraulic hose 116 168 0
				65-2
6. Bracket	111 552 01	23. Coupling part,	04 390 448 66	
0. 2.40.00		pump		39. Filter set 117 833 0
7. Ignition electro	ode pair off			RSA 90, 125
55-3, 65-3	919 247 01	24. Coupling part,	118 065 01	1107100, 120
65-2	919 246 01	fan wheel	110 00001	40. Control box
55-2 55-2		ian wiidei		LAL 1.25 914 939 0
33 - 2	919 245 01	OF Flores	119 737 0105	
O A ali: . a tura a unt un l	-4	25. Flange,	119 /3/0105	LOA44252A27 915 595 0
8. Adjustment pl	•	motor		LMO24.255.R2B 920 242 0
55-2H, 65-2H	118 229 01			55-2,65-2
		26. Conical shield	117 935 01	
Adjustment pl	•	plate		
55-R,65-R	918 288 01			

2(3) 171 745 01 04-01

11. SPARE PART LIST

41.	Relay base	114 040 00	53. Inspection glass 118 088 01
	LAL LOA/LMO 55-2,65-2	114 942 00 915 596 00	54. Gasket 117 953 01
40	•	110 105 01	55. Protective grating 118 319 01
42.	Flange, Photoresistor QRB1	112 405 01	56. Cover 118 238 0105
43	Photoresistor	912 409 08	57. Gasket 118 249 01
43.	compl. QRB-A 700mm	912 409 00	58. Cover, 118 242 0105 inspection glass
44.	Contactor CI 9	113 110 01	59. Inspection cover 117 080 01
45.	Thermaloverload		60. Test nipple 118 053 01
70.	protection 2,7-4,2A 65	113 111 03	61. Slewing bracket 119 470 01 compl.
	1,8-2,8A 55	113 111 06	62. Covering plate, servo motor adjustment 118 239 0105 118 401 0105
46.	Switch I-II 0-I	120 149 01 120 149 02	device 55-2H, 65-2H
47.	Time meter	117 678 01	63. End piece 118 103 01
48.	Plug-in contact cor		64. Servo motor SQN75.294A21B 119 423 03
	female 7-pole male 7-pole	115 586 03 115 585 00	2-stage, LAL SQN75.436A21B 119 423 01
	green male 4-pole female 4-pole	119 19701 119 19801	3-stage, LAL SQN75.244A21B 119 423 04 2-stage, LOA/LMO
	55-2, 65-2 stage 2 55-3, 65-3 stage 3 black		65. Airdamper 918 240 01
	male 4-pole female 4-pole	119 103 01 119 104 01	compl. 55-2H, 65-2H 918 241 01
	55-3, 65-3 stage 2 male 5-pole	119 199 01	66. Adjustment device 917 565 03
	female 5-pole	119 200 01	55-2H, 65-2H Spring, compl. 133 799 01
49.	Indicating lamp green	117 211 03	adjustment device 55-2H, 65-2H
50.	Fuse holder compl. 55-3, 65-3	118 118 03	67. Transformer EBI 115 977 01 Cabel 117 570 04
	55-2,65-2 Fuse 6,3A	118 118 04 113 322 01	68. Ignition cable 500mm 119 337 06
51.	Plug-in contact cor 7+4+5+4-pole 55-3, 65-3	npl. 119 486 10	69. Flexible pipe 113 542 08 1500mm
	4+7+5-pole 55-2,65-2	119 486 01	70. Oil filter compl. ½" 114 293 04 Filter 914 314 03
52.	Locking ring	118 018 01	

Enertech Limited, P O Box 1, Vines Lane Droitwich, Worcestershire, WR9 8NA

